Open In App

Josephus Problem

Last Updated : 20 Feb, 2025
Summarize
Comments
Improve
Suggest changes
Like Article
Like
Share
Report
News Follow

There are N people standing in a circle waiting to be executed. The counting out begins at some point in the circle and proceeds around the circle in a fixed direction. In each step, a certain number of people are skipped and the next person is executed. The elimination proceeds around the circle (which is becoming smaller and smaller as the executed people are removed), until only the last person remains, who is given freedom. 

Given the total number of persons N and a number k which indicates that k-1 persons are skipped and the kth person is killed in a circle. The task is to choose the person in the initial circle that survives.

Examples:

Input: N = 5 and k = 2
Output: 3
Explanation: Firstly, the person at position 2 is killed, 
then the person at position 4 is killed, then the person at position 1 is killed. 
Finally, the person at position 5 is killed. So the person at position 3 survives. 

Input: N = 7 and k = 3
Output: 4
Explanations: The persons at positions 3, 6, 2, 7, 5, and 1 are killed in order, 
and the person at position 4 survives.

Input: N = 6 and k = 2
Output: 5
Explanation: The persons at positions 2, 4, 6, 3, and 1 are killed in order, and the person at position 5 survives.

[Approach – 1] Solving Josephus problem using List: 

The simple approach is to create a list and add all values from 1 to N to it. Create a recursive function that takes a list, start (position at which counting will start), and k ( number of people to be skipped) as an argument.

  • If the size of the list is one i.e. only one person left then return this position.
  • Otherwise, start counting the k person in a clockwise direction from starting position and remove the person at the kth position.
  • Now the person at the kth position is removed and now counting will start from this position. This process continues till only one person is left.

Follow the below steps to Implement the idea:

  • Create a vector person and push all the values from 1 to N in person.
  • Recursively eliminate the index element 
    • Erase the element on the position index.
    • Call for (index + k)% size of person. 
    • If size of person = 1, return person[i].
C++
#include <bits/stdc++.h>

using namespace std;

void Josh(vector<int> person, int k, int index)
{
    // Base case , when only one person is left
    if (person.size() == 1) {
        cout << person[0] << endl;
        return;
    }

    // find the index of first person which will die
    index = ((index + k) % person.size());

    // remove the first person which is going to be killed
    person.erase(person.begin() + index);

    // recursive call for n-1 persons
    Josh(person, k, index);
}

int main()
{
    int n = 14; // specific n and k  values for original
                // josephus problem
    int k = 2;
    k--; // (k-1)th person will be killed
    int index
        = 0; // The index where the person which will die

    vector<int> person;
    // fill the person vector
    for (int i = 1; i <= n; i++) {
        person.push_back(i);
    }

    Josh(person, k, index);
}
Java Python C# JavaScript

Output
13

Time Complexity: O(N2)
Auxiliary Space: O(N), For recursion stack

[Approach – 2] Solving Josephus problem iteratively

Illustration:

Follow the below steps to Implement the idea:

  • Initialize variables num, cnt, and cut with 1, 0, and 0 respectively and an array arr[] of size N with the initial value set as 1.
  • Run a while loop till cnt < N:
    • Run a while loop till num is less than equal to k.
      • Increment cut by one and take modulo by N
      • If arr[cut] = 1 increment num by one.
    •  Set num = 1, arr[cut] = 0 and increment cnt and cut by one and cut = cut % n;
    • Run a while loop till arr[cut] = 0 and increment cut by one.
  • Return cnt + 1 as the required answer.
C++
#include <bits/stdc++.h>
using namespace std;

int Josephus(int, int);

int Josephus(int n, int k)
{
    k--;
    int arr[n];

    // Makes all the 'n' people alive by
    // assigning them value = 1
    for (int i = 0; i < n; i++) {
        arr[i] = 1;
    }
    int cnt = 0, cut = 0,
        // Cut = 0 gives the sword to 1st person.
        num = 1;

    // Loop continues till n-1 person dies.
    while (cnt < (n - 1)) {

        // Checks next (kth) alive persons.
        while (num <= k) {
            cut++;

            // Checks and resolves overflow
            // of Index.
            cut = cut % n;
            if (arr[cut] == 1) {
                // Updates the number of persons
                // alive.
                num++;
            }
        }

        // Refreshes value to 1 for next use.
        num = 1;

        // Kills the person at position of 'cut'
        arr[cut] = 0;

        // Updates the no. of killed persons.
        cnt++;
        cut++;

        // Checks and resolves overflow of Index.
        cut = cut % n;

        // Checks the next alive person the
        // sword is to be given.
        while (arr[cut] == 0) {
            cut++;

            // Checks and resolves overflow
            // of Index.
            cut = cut % n;
        }
    }

    // Output is the position of the last
    // man alive(Index + 1);
    return cut + 1;
}

// Driver code
int main()
{
    int n = 14, k = 2;
    cout << Josephus(n, k);
    return 0;
}
Java Python C# JavaScript

Output
13

Time Complexity: O(n2)
Auxiliary Space: O(n)

[Approach – 3] Solving Josephus Problem in Linear Time and Constant Space

Follow the below steps:

  • Initialize variables i and ans with 1 and 0 respectively.
  • Run a while loop till i <= N:
    • Update ans with (ans + k) % i.
    • Increment i by 1.
  • Return ans + 1 as the required answer.
C++
// C++ code to Implement Josephus Problem

#include <iostream>
using namespace std;

int Josephus(int N, int k)
{

    // Initialize variables i and ans with 1 and 0
    // respectively.

    int i = 1, ans = 0;

    // Run a while loop till i <= N

    while (i <= N) {

        // Update the Value of ans and Increment i by 1
        ans = (ans + k) % i;
        i++;
    }

    // Return required answer
    return ans + 1;
}

// main function
int main()
{

    int N = 14, k = 2;
    cout << Josephus(N, k) << endl;
    return 0;
}
C Java Python C# JavaScript

Output
13

Time Complexity: O(n)
Auxiliary Space: O(1)

[Approach – 4] Solving Josephus Problem using Recursion

The problem has the following recursive structure. josephus(n, k) = (josephus(n – 1, k) + k-1) % n + 1 and josephus(1, k) = 1

After the first person (kth from the beginning) is killed, n-1 persons are left. Make recursive call for Josephus(n – 1, k) to get the position with n-1 persons. But the position returned by Josephus(n – 1, k) will consider the position starting from k%n + 1. So make adjustments to the position returned by Josephus(n – 1, k). 

C++
// C++ code to implement the idea

#include <bits/stdc++.h>
using namespace std;

// Recursive function to implement the Josephus problem
int josephus(int n, int k)
{
    if (n == 1)
        return 1;
    else
        // The position returned by josephus(n - 1, k)
        // is adjusted because the recursive call
        // josephus(n - 1, k) considers the
        // original position k % n + 1 as position 1
        return (josephus(n - 1, k) + k - 1) % n + 1;
}

// Driver code
int main()
{
    int n = 14;
    int k = 2;
    cout << "The chosen place is " << josephus(n, k);
    return 0;
}
C Java Python C# JavaScript PHP

Output
The chosen place is 13

Time Complexity: O(n)
Auxiliary Space: O(n) the space used in recursion call stack

Related Article: Josephus problem | Set 2 (A Simple Solution when k = 2)




Next Article

Similar Reads

three90RightbarBannerImg