Josephus Problem
There are N people standing in a circle waiting to be executed. The counting out begins at some point in the circle and proceeds around the circle in a fixed direction. In each step, a certain number of people are skipped and the next person is executed. The elimination proceeds around the circle (which is becoming smaller and smaller as the executed people are removed), until only the last person remains, who is given freedom.
Given the total number of persons N and a number k which indicates that k-1 persons are skipped and the kth person is killed in a circle. The task is to choose the person in the initial circle that survives.
Examples:
Input: N = 5 and k = 2
Output: 3
Explanation: Firstly, the person at position 2 is killed,
then the person at position 4 is killed, then the person at position 1 is killed.
Finally, the person at position 5 is killed. So the person at position 3 survives.Input: N = 7 and k = 3
Output: 4
Explanations: The persons at positions 3, 6, 2, 7, 5, and 1 are killed in order,
and the person at position 4 survives.
Josephus problem using List:
The simple approach is to create a list and add all values from 1 to N to it. Create a recursive function that takes a list, start (position at which counting will start), and k ( number of people to be skipped) as an argument. If the size of the list is one i.e. only one person left then return this position. Otherwise, start counting the k person in a clockwise direction from starting position and remove the person at the kth position. Now the person at the kth position is removed and now counting will start from this position. This process continues till only one person is left.
Pseudocode :
Josephus( list , start , k){
if list.size = 1
return list[0]
start = (start + k) % list.size
list.remove( start )
return Josephus( list, start, k)
}
Follow the below steps to Implement the idea:
- Create a vector person and push all the values from 1 to N in person.
- Recursively eliminate the index element
- Erase the element on the position index.
- Call for (index + k)% size of person.
- If size of person = 1, return person[i].
Below is the Implementation of the above approach:
#include <bits/stdc++.h>
using namespace std;
void Josh(vector<int> person, int k, int index)
{
// Base case , when only one person is left
if (person.size() == 1) {
cout << person[0] << endl;
return;
}
// find the index of first person which will die
index = ((index + k) % person.size());
// remove the first person which is going to be killed
person.erase(person.begin() + index);
// recursive call for n-1 persons
Josh(person, k, index);
}
int main()
{
int n = 14; // specific n and k values for original
// josephus problem
int k = 2;
k--; // (k-1)th person will be killed
int index
= 0; // The index where the person which will die
vector<int> person;
// fill the person vector
for (int i = 1; i <= n; i++) {
person.push_back(i);
}
Josh(person, k, index);
}
​
using namespace std;
​
void Josh(vector<int> person, int k, int index)
{
// Base case , when only one person is left
if (person.size() == 1) {
cout << person[0] << endl;
return;
}
​
// find the index of first person which will die
index = ((index + k) % person.size());
​
// remove the first person which is going to be killed
person.erase(person.begin() + index);
​
// recursive call for n-1 persons
Josh(person, k, index);
}
​
int main()
{
int n = 14; // specific n and k values for original
// josephus problem
int k = 2;
k--; // (k-1)th person will be killed
int index
= 0; // The index where the person which will die
​
vector<int> person;
// fill the person vector
for (int i = 1; i <= n; i++) {
person.push_back(i);
}
​
Josh(person, k, index);
}
import java.util.*;
class GFG{
static void Josh(List<Integer> person, int k, int index)
{
// Base case , when only one person is left
if (person.size() == 1) {
System.out.println(person.get(0));
return;
}
// find the index of first person which will die
index = ((index + k) % person.size());
// remove the first person which is going to be killed
person.remove(index);
// recursive call for n-1 persons
Josh(person, k, index);
}
// Driver code
public static void main(String [] args)
{
int n = 14; // specific n and k values for original
// josephus problem
int k = 2;
k--; // (k-1)th person will be killed
int index
= 0; // The index where the person which will die
List<Integer> person = new ArrayList<>();
// fill the person vector
for (int i = 1; i <= n; i++) {
person.add(i);
}
Josh(person, k, index);
}
}
// This code is contributed by umadevi9616
# Python code for Josephus Problem
def Josh(person, k, index):
# Base case , when only one person is left
if len(person) == 1:
print(person[0])
return
# find the index of first person which will die
index = ((index+k)%len(person))
# remove the first person which is going to be killed
person.pop(index)
# recursive call for n-1 persons
Josh(person,k,index)
# Driver Program to test above function
n = 14 # specific n and k values for original josephus problem
k = 2
k-=1 # (k-1)th person will be killed
index = 0
# fill the person vector
person=[]
for i in range(1,n+1):
person.append(i)
Josh(person,k,index)
# This code is contributed by
# Gaurav Kandel
using System;
using System.Collections.Generic;
class GFG {
static void Josh(List<int> person, int k, int index)
{
// Base case , when only one person is left
if (person.Count == 1) {
Console.WriteLine(person[0]);
return;
}
// find the index of first person which will die
index = ((index + k) % person.Count);
// remove the first person which is going to be killed
person.RemoveAt(index);
// recursive call for n-1 persons
Josh(person, k, index);
}
// Driver code
static void Main()
{
int n = 14; // specific n and k values for original
// josephus problem
int k = 2;
k--; // (k-1)th person will be killed
int index
= 0; // The index where the person which will die
List<int> person = new List<int>();
// fill the person vector
for (int i = 1; i <= n; i++) {
person.Add(i);
}
Josh(person, k, index);
}
}
// This code is contributed by divyesh072019.
<script>
function Josh( person , k , index) {
// Base case , when only one person is left
if (person.length == 1) {
document.write(person[0]);
return;
}
// find the index of first person which will die
index = ((index + k) % person.length);
// remove the first person which is going to be killed
if (index > -1) {
person.splice(index, 1);
}
// recursive call for n-1 persons
Josh(person, k, index);
}
// Driver code
var n = 14; // specific n and k values for original
// josephus problem
var k = 2;
k--; // (k-1)th person will be killed
var index = 0; // The index where the person which will die
var person = [];
// fill the person vector
for (var i = 1; i <= n; i++) {
person.push(i);
}
Josh(person, k, index);
// This code is contributed by umadevi9616
</script>
Output
13
Time Complexity: O(N2)
Auxiliary Space: O(N), For recursion stack
Approach to solve Josephus problem iteratively:
Illustration:
N = 5, k = 2
Add all values from 1 to N in the list. We will call the recursive function with start = 0 and k = 1 (0-indexing)
Now the element at 1-index (person number 2) will be killed. And it is removed from the list. The new counting will begin from 1-index, the person at 1-index killed so now person at 2-index (person number 3) comes to 1-index and counting starts from here now.
Now we have 4 people, counting starting from 1-index (person number 3) and the person at kth (2-index ) position will be killed.
The person at 2-index (person number 4) was killed so now we have 3 people left and the person (person number 5) at 3-index shifted to 2-index. And counting starts from here.
The person at the 0-index was killed and we have now two-person left in the circle. And the person at 1-index shifted to 0-index i.e. person number 3.
Final counting done and the person at 1-index killed and the only person who is left is at position 3.
Follow the below steps to Implement the idea:
- Initialize variables num, cnt, and cut with 1, 0, and 0 respectively and an array arr[] of size N with the initial value set as 1.
- Run a while loop till cnt < N:
- Run a while loop till num is less than equal to k.
- Increment cut by one and take modulo by N
- If arr[cut] = 1 increment num by one.
- Set num = 1, arr[cut] = 0 and increment cnt and cut by one and cut = cut % n;
- Run a while loop till arr[cut] = 0 and increment cut by one.
- Run a while loop till num is less than equal to k.
- Return cnt + 1 as the required answer.
Below is the Implementation of the above approach:
#include <bits/stdc++.h>
using namespace std;
int Josephus(int, int);
int Josephus(int n, int k)
{
k--;
int arr[n];
// Makes all the 'n' people alive by
// assigning them value = 1
for (int i = 0; i < n; i++) {
arr[i] = 1;
}
int cnt = 0, cut = 0,
// Cut = 0 gives the sword to 1st person.
num = 1;
// Loop continues till n-1 person dies.
while (cnt < (n - 1)) {
// Checks next (kth) alive persons.
while (num <= k) {
cut++;
// Checks and resolves overflow
// of Index.
cut = cut % n;
if (arr[cut] == 1) {
// Updates the number of persons
// alive.
num++;
}
}
// Refreshes value to 1 for next use.
num = 1;
// Kills the person at position of 'cut'
arr[cut] = 0;
// Updates the no. of killed persons.
cnt++;
cut++;
// Checks and resolves overflow of Index.
cut = cut % n;
// Checks the next alive person the
// sword is to be given.
while (arr[cut] == 0) {
cut++;
// Checks and resolves overflow
// of Index.
cut = cut % n;
}
}
// Output is the position of the last
// man alive(Index + 1);
return cut + 1;
}
// Driver code
int main()
{
int n = 14, k = 2;
cout << Josephus(n, k);
return 0;
}
// THIS CODE IS PRESENTED BY SHISHANK RAWAT
using namespace std;
​
int Josephus(int, int);
​
int Josephus(int n, int k)
{
k--;
int arr[n];
​
// Makes all the 'n' people alive by
// assigning them value = 1
for (int i = 0; i < n; i++) {
arr[i] = 1;
}
int cnt = 0, cut = 0,
// Cut = 0 gives the sword to 1st person.
num = 1;
​
// Loop continues till n-1 person dies.
while (cnt < (n - 1)) {
​
// Checks next (kth) alive persons.
while (num <= k) {
cut++;
​
// Checks and resolves overflow
// of Index.
cut = cut % n;
if (arr[cut] == 1) {
// Updates the number of persons
// alive.
num++;
}
}
​
// Refreshes value to 1 for next use.
num = 1;
​
// Kills the person at position of 'cut'
arr[cut] = 0;
​
// Updates the no. of killed persons.
cnt++;
cut++;
​
// Checks and resolves overflow of Index.
cut = cut % n;
​
// Checks the next alive person the
// sword is to be given.
while (arr[cut] == 0) {
cut++;
​
// Checks and resolves overflow
// of Index.
cut = cut % n;
}
}
​
// Output is the position of the last
// man alive(Index + 1);
return cut + 1;
}
​
// Driver code
int main()
{
int n = 14, k = 2;
cout << Josephus(n, k);
return 0;
}
​
// THIS CODE IS PRESENTED BY SHISHANK RAWAT
// Java code to implement the above approach
import java.io.*;
class GFG {
public static void main(String[] args)
{
int n = 14, k = 2;
System.out.println(Josephus(n, k));
}
public static int Josephus(int n, int k)
{
k--;
int arr[] = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = 1; // Makes all the 'n' people alive by
// assigning them value = 1
}
int cnt = 0, cut = 0,
num
= 1; // Cut = 0 gives the sword to 1st person.
while (
cnt
< (n
- 1)) // Loop continues till n-1 person dies.
{
while (num
<= k) // Checks next (kth) alive persons.
{
cut++;
cut = cut
% n; // Checks and resolves overflow
// of Index.
if (arr[cut] == 1) {
num++; // Updates the number of persons
// alive.
}
}
num = 1; // refreshes value to 1 for next use.
arr[cut] = 0; // Kills the person at position of
// 'cut'
cnt++; // Updates the no. of killed persons.
cut++;
cut = cut % n; // Checks and resolves overflow
// of Index.
while (arr[cut]
== 0) // Checks the next alive person the
// sword is to be given.
{
cut++;
cut = cut
% n; // Checks and resolves overflow
// of Index.
}
}
return cut
+ 1; // Output is the position of the last
// man alive(Index + 1);
}
}
// This code is contributed by Shubham Singh
def Josephus(n, k):
k -= 1
arr = [0]*n
for i in range(n):
arr[i] = 1 # Makes all the 'n' people alive by
# assigning them value = 1
cnt = 0
cut = 0
num = 1 # Cut = 0 gives the sword to 1st person.
while (cnt < (n - 1)):
# Loop continues till n-1 person dies.
while (num <= k):
# Checks next (kth) alive persons.
cut += 1
cut = cut % n # Checks and resolves overflow
# of Index.
if (arr[cut] == 1):
num+=1 # Updates the number of persons
# alive.
num = 1 # refreshes value to 1 for next use.
arr[cut] = 0 # Kills the person at position of 'cut'
cnt += 1 # Updates the no. of killed persons.
cut += 1
cut = cut % n # Checks and resolves overflow of Index.
while (arr[cut] == 0):
# Checks the next alive person the
# sword is to be given.
cut += 1
cut = cut % n # Checks and resolves overflow
# of Index.
return cut + 1 # Output is the position of the last
# man alive(Index + 1)
# Driver Code
n, k = 14, 2 #map (int, input().splut())
print(Josephus(n, k))
# This code is contributed by ShubhamSingh
// C# code to implement the above approach
using System;
using System.Linq;
public class GFG{
public static void Main ()
{
int n = 14, k = 2;
Console.Write(Josephus(n, k));
}
public static int Josephus(int n, int k)
{
k--;
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = 1; // Makes all the 'n' people alive by
// assigning them value = 1
}
int cnt = 0, cut = 0,
num = 1; // Cut = 0 gives the sword to 1st person.
while (
cnt
< (n - 1)) // Loop continues till n-1 person dies.
{
while (num <= k) // Checks next (kth) alive persons.
{
cut++;
cut = cut % n;
// Checks and resolves overflow
// of Index.
if (arr[cut] == 1)
{
num++; // Updates the number of persons
// alive.
}
}
num = 1; // refreshes value to 1 for next use.
arr[cut]
= 0; // Kills the person at position of 'cut'
cnt++; // Updates the no. of killed persons.
cut++;
cut = cut
% n; // Checks and resolves overflow of Index.
while (arr[cut]
== 0) // Checks the next alive person the
// sword is to be given.
{
cut++;
cut = cut % n; // Checks and resolves overflow
// of Index.
}
}
return cut + 1; // Output is the position of the last
// man alive(Index + 1);
}
}
// This code is contributed by Shubham Singh
<script>
// Javascript code to implement the above approach
let n = 14, k = 2;
document.write(Josephus(n, k));
function Josephus(n, k)
{
k--;
let arr = new Array(n);
for (let i = 0; i < n; i++)
{
// Makes all the 'n' people alive by
// assigning them value = 1
arr[i] = 1;
}
// Cut = 0 gives the sword to 1st person.
let cnt = 0, cut = 0,
num = 1;
// Loop continues till n-1 person dies.
while (cnt < (n - 1))
{
// Checks next (kth) alive persons.
while (num <= k)
{
cut++;
cut = cut % n;
// Checks and resolves overflow
// of Index.
if (arr[cut] == 1)
{
// Updates the number of persons
// alive.
num++;
}
}
// refreshes value to 1 for next use.
num = 1;
arr[cut] = 0; // Kills the person at position of 'cut'
// Updates the no. of killed persons.
cnt++;
cut++;
// Checks and resolves overflow of Index.
cut = cut % n;
// Checks the next alive person the
// sword is to be given.
while (arr[cut] == 0)
{
cut++;
// Checks and resolves overflow
// of Index.
cut = cut % n;
}
}
// Output is the position of the last
// man alive(Index + 1);
return cut + 1;
}
// This code is contributed by decode2207.
</script>
Output
13
Time Complexity: O(N2)
Auxiliary Space: O(N)
Josephus Problem in Linear Time and Constant Space:
Follow the below steps to Solve the Problem (Approach):
- Initialize variables i and ans with 1 and 0 respectively.
- Run a while loop till i <= N:
- Update ans with (ans + k) % i.
- Increment i by 1.
- Return ans + 1 as the required answer.
Below is the Implementation of the above Steps:
// C++ code to Implement Josephus Problem
#include <iostream>
using namespace std;
int Josephus(int N, int k)
{
// Initialize variables i and ans with 1 and 0
// respectively.
int i = 1, ans = 0;
// Run a while loop till i <= N
while (i <= N) {
// Update the Value of ans and Increment i by 1
ans = (ans + k) % i;
i++;
}
// Return required answer
return ans + 1;
}
// main function
int main()
{
int N = 14, k = 2;
cout << Josephus(N, k) << endl;
return 0;
}
// This code is presented by Akash Mangal
// C++ code to Implement Josephus Problem
​
using namespace std;
​
int Josephus(int N, int k)
{
​
// Initialize variables i and ans with 1 and 0
// respectively.
​
int i = 1, ans = 0;
​
// Run a while loop till i <= N
​
while (i <= N) {
​
// Update the Value of ans and Increment i by 1
ans = (ans + k) % i;
i++;
}
​
// Return required answer
return ans + 1;
}
​
// main function
int main()
{
​
int N = 14, k = 2;
cout << Josephus(N, k) << endl;
return 0;
}
​
// This code is presented by Akash Mangal
// C Program to Implement Josephus Problem
#include <stdio.h>
int Josephus(int N, int k)
{
// Initialize variables i and ans with 1 and 0
// respectively.
int i = 1, ans = 0;
// Run a while loop till i <= N
while (i <= N) {
// Update the Value of ans and Increment i by 1
ans = (ans + k) % i;
i++;
}
// Return required answer
return ans + 1;
}
// main function
int main()
{
int N = 14, k = 2;
printf("%d", Josephus(N, k));
return 0;
}
// This code is presented by Akash Mangal
// Java code to Implement Josephus Problem
import java.io.*;
class GFG {
public static int Josephus(int N, int k) {
// Initialize variables i and ans with 1 and 0 respectively.
int i = 1, ans = 0;
// Run a while loop till i <= N
while (i <= N) {
// Update the Value of ans and Increment i by 1
ans = (ans + k) % i;
i++;
}
// Return required answer
return ans + 1;
}
// main function
public static void main (String[] args) {
int N = 14, k = 2;
int ans = Josephus(N, k);
System.out.println(ans);
}
}
// This code is presented by Akash Mangal
# python code to implement Josephus problem
# Josephus function which will take
# two parameter N and K, number of people and positions respectively
# return the position of person survives
def Josephus(n, k):
# initialize two variables i and ans
i = 1
ans = 0
while(i <= n):
# update the value of ans
ans = (ans + k) % i
i += 1
# returning the required answer
return ans + 1
# driver code
# let
n = 14
k = 2
result = Josephus(n, k)
print(result)
# This code is contributed by sarveshc111.
// C# code to Implement Josephus Problem
using System;
class GFG
{
public static int Josephus(int N, int k)
{
// Initialize variables i and ans with 1 and 0 respectively.
int i = 1, ans = 0;
// Run a while loop till i <= N
while (i <= N)
{
// Update the Value of ans and Increment i by 1
ans = (ans + k) % i;
i++;
}
// Return required answer
return ans + 1;
}
// main function
static void Main(string[] args)
{
int N = 14, k = 2;
int ans = Josephus(N, k);
Console.WriteLine(ans);
}
}
// driver code
let n = 14, k = 2;
document.write(Josephus(n,k));
// Josephus function
// return the position of last man survives
function Josephus(n, k)
{
let i = 1, ans = 0;
while(i <= n ){
// update the value of ans
ans = (ans + k) % i;
i++;
}
return ans + 1;
}
// This code is contributed by sarveshc111.
Output
13
Time Complexity: O(N)
Auxiliary Space: O(1)
Josephus Problem using Recursion:
Below is the idea to solve the problem:
The problem has the following recursive structure. josephus(n, k) = (josephus(n – 1, k) + k-1) % n + 1 and josephus(1, k) = 1
After the first person (kth from the beginning) is killed, n-1 persons are left. Make recursive call for Josephus(n – 1, k) to get the position with n-1 persons. But the position returned by Josephus(n – 1, k) will consider the position starting from k%n + 1. So make adjustments to the position returned by Josephus(n – 1, k).
Below is the Implementation of the above idea.
// C++ code to implement the idea
#include <bits/stdc++.h>
using namespace std;
// Recursive function to implement the Josephus problem
int josephus(int n, int k)
{
if (n == 1)
return 1;
else
// The position returned by josephus(n - 1, k)
// is adjusted because the recursive call
// josephus(n - 1, k) considers the
// original position k % n + 1 as position 1
return (josephus(n - 1, k) + k - 1) % n + 1;
}
// Driver code
int main()
{
int n = 14;
int k = 2;
cout << "The chosen place is " << josephus(n, k);
return 0;
}
// This code is contributed by shubhamsingh10
// C++ code to implement the idea
​
using namespace std;
​
// Recursive function to implement the Josephus problem
int josephus(int n, int k)
{
if (n == 1)
return 1;
else
// The position returned by josephus(n - 1, k)
// is adjusted because the recursive call
// josephus(n - 1, k) considers the
// original position k % n + 1 as position 1
return (josephus(n - 1, k) + k - 1) % n + 1;
}
​
// Driver code
int main()
{
int n = 14;
int k = 2;
cout << "The chosen place is " << josephus(n, k);
return 0;
}
​
// This code is contributed by shubhamsingh10
#include <stdio.h>
int josephus(int n, int k)
{
if (n == 1)
return 1;
else
/* The position returned by josephus(n - 1, k) is
adjusted because the recursive call josephus(n -
1, k) considers the original position
k%n + 1 as position 1 */
return (josephus(n - 1, k) + k - 1) % n + 1;
}
// Driver Program to test above function
int main()
{
int n = 14;
int k = 2;
printf("The chosen place is %d", josephus(n, k));
return 0;
}
// Java code for Josephus Problem
import java.io.*;
class GFG {
static int josephus(int n, int k)
{
if (n == 1)
return 1;
else
/* The position returned by josephus(n - 1, k)
is adjusted because the recursive call
josephus(n - 1, k) considers the original
position k%n + 1 as position 1 */
return (josephus(n - 1, k) + k - 1) % n + 1;
}
// Driver Program to test above function
public static void main(String[] args)
{
int n = 14;
int k = 2;
System.out.println("The chosen place is "
+ josephus(n, k));
}
}
// This code is contributed by Prerna Saini
# Python code for Josephus Problem
def josephus(n, k):
if (n == 1):
return 1
else:
# The position returned by
# josephus(n - 1, k) is adjusted
# because the recursive call
# josephus(n - 1, k) considers
# the original position
# k%n + 1 as position 1
return (josephus(n - 1, k) + k-1) % n + 1
# Driver Program to test above function
n = 14
k = 2
print("The chosen place is ", josephus(n, k))
# This code is contributed by
# Sumit Sadhakar
// C# code for Josephus Problem
using System;
class GFG {
static int josephus(int n, int k)
{
if (n == 1)
return 1;
else
/* The position returned
by josephus(n - 1, k) is
adjusted because the
recursive call josephus(n
- 1, k) considers the
original position k%n + 1
as position 1 */
return (josephus(n - 1, k) + k - 1) % n + 1;
}
// Driver Program to test above
// function
public static void Main()
{
int n = 14;
int k = 2;
Console.WriteLine("The chosen "
+ "place is " + josephus(n, k));
}
}
// This code is contributed by anuj_67.
<script>
// Javascript code for Josephus Problem
function josephus(n, k)
{
if (n == 1)
return 1;
else
/* The position returned
by josephus(n - 1, k) is
adjusted because the
recursive call josephus(n
- 1, k) considers the
original position k%n + 1
as position 1 */
return (josephus(n - 1, k)
+ k-1) % n + 1;
}
let n = 14;
let k = 2;
document.write("The chosen " + "place is " + josephus(n, k));
</script>
<?php
// PHP code for
// Josephus Problem
function josephus($n, $k)
{
if ($n == 1)
return 1;
else
/* The position returned by
josephus(n - 1, k) is
adjusted because the
recursive call josephus
(n - 1, k) considers the
original position k%n + 1
as position 1 */
return (josephus($n - 1, $k) +
$k - 1) % $n + 1;
}
// Driver Code
$n = 14;
$k = 2;
echo "The chosen place is ", josephus($n, $k);
// This code is contributed by ajit.
?>
Output
The chosen place is 13
Time Complexity: O(N)
Auxiliary Space: O(N) the space used in recursion call stack
Please visit set-2: Josephus problem | Set 2 (A Simple Solution when k = 2)
Master DSA and also get 90% fee refund on completing 90% course in 90 days! Take the Three 90 Challenge today.
Step into the Three 90 Challenge – 90 days to push limits, break barriers, and become the best version of yourself! Don't miss your chance to upskill and get 90% refund. What more motivation do you need? Start the challenge right away!