Project Nayuki


Creating a QR Code step by step

This JavaScript demo application visualizes in detailed steps, how a text string is encoded into a QR Code barcode symbol. The content of this page essentially explains and justifies how my QR Code generator library works internally.

User input

Error correction level:
(between 1 and 40)
(−1 for automatic, 0 to 7 for manual)

QR Code output


Step-by-step process

Show/hide each step:

0. Analyze Unicode characters

Number of code points in the input text string: 17

Details of each character:

Index Char CP hex NM AM BM KM
0HU+48NoYesYesNo
1eU+65NoNoYesNo
2lU+6CNoNoYesNo
3lU+6CNoNoYesNo
4oU+6FNoNoYesNo
5,U+2CNoNoYesNo
6 U+20NoYesYesNo
7wU+77NoNoYesNo
8oU+6FNoNoYesNo
9rU+72NoNoYesNo
10lU+6CNoNoYesNo
11dU+64NoNoYesNo
12!U+21NoNoYesNo
13 U+20NoYesYesNo
141U+31YesYesYesNo
152U+32YesYesYesNo
163U+33YesYesYesNo

Can every character be encoded in:

Mode Encodable
NumericNo
AlphanumericNo
ByteYes
KanjiNo

Chosen segment mode to encode all characters: Byte

1. Create data segment

Convert each character to bits. For numeric and alphanumeric modes, consecutive characters are grouped together before being encoded into bits. For byte mode, a character produces either 8, 16, 24, or 32 bits.

Index Char Values (hex) Value Combined Bits
0H4801001000
1e6501100101
2l6C01101100
3l6C01101100
4o6F01101111
5,2C00101100
6 2000100000
7w7701110111
8o6F01101111
9r7201110010
10l6C01101100
11d6401100100
12!2100100001
13 2000100000
1413100110001
1523200110010
1633300110011

The created single segment:

  • Mode: Byte
  • Count: 17 bytes
  • Data: 136 bits long

(This demo program always creates a single segment for simplicity. But it is possible to segment the text optimally to minimize the total bit length.)

2. Fit to version number

Total bit length needed to represent the list of segments, depending on version:

Range Num bits Num codewords
Version 1 ~ 9 148 19
Version 10 ~ 26 156 20
Version 27 ~ 40 156 20

(Note: A codeword is defined as 8 bits, also known as a byte.)

QR Code capacity of data codewords per version and error correction level, and whether the data fits (green/red background):

Version ECC L ECC M ECC Q ECC H
11916139
234282216
355443426
480644836
5108866246
61361087660
71561248866
819415411086
9232182132100
10274216154122
11324254180140
12370290206158
13428334244180
14461365261197
15523415295223
16589453325253
17647507367283
18721563397313
19795627445341
20861669485385
21932714512406
221006782568442
231094860614464
241174914664514
2512761000718538
2613701062754596
2714681128808628
2815311193871661
2916311267911701
3017351373985745
31184314551033793
32195515411115845
33207116311171901
34219117251231961
35230618121286986
362434191413541054
372566199214261096
382702210215021142
392812221615821222
402956233416661276

Chosen version number: 1

3. Concatenate segments, add padding, make codewords

Join a variety of bit strings together:

Item Bit data Num bits Sum bits
Segment 0 mode010044
Segment 0 count00010001812
Segment 0 data0100100001100101011011000110110001101111001011000010000001110111011011110111001001101100011001000010000100100000001100010011001000110011136148
Terminator00004152
Bit padding0152
Byte padding0152

Notes:

  • The segment mode is always a 4-bit field.

  • The character count’s field width depends on the mode and version.

  • The terminator is normally four “0” bits, but fewer if the data codeword capacity is reached.

  • The bit padding is between zero to seven “0” bits, to fill all unused bits in the last byte.

  • The byte padding consists of alternating (hexadecimal) EC and 11 until the capacity is reached.

The entire sequence of data bits: 01000001000101001000011001010110110001101100011011110010110000100000011101110110111101110010011011000110010000100001001000000011000100110010001100110000

The entire sequence of data codeword bytes (by splitting the bit string into groups of 8 bits), displayed in hexadecimal: 41 14 86 56 C6 C6 F2 C2 07 76 F7 26 C6 42 12 03 13 23 30

4. Split blocks, add ECC, interleave

Statistics about all blocks:

Number of data codewords: 19
Number of blocks: 1
Data codewords per short block:19
Data codewords per long block: N/A
ECC codewords per any block: 7
Number of short blocks: 1
Number of long blocks: 0

Split the sequence of data codewords (green background) into short and long blocks; then for each block, compute the ECC codewords (blue) and append them to the end of the block:

Block index
0
Codeword index within block
041
114
286
356
4C6
5C6
6F2
7C2
807
976
10F7
1126
12C6
1342
1412
1503
1613
1723
1830
19
2085
21A9
225E
2307
240A
2536
26C9

(Note: The math behind computing the Reed–Solomon error correction codes is omitted because it is long, tedious, and not very interesting.)

The final sequence of codewords formed by interleaving data/ECC codewords from different blocks: 41 14 86 56 C6 C6 F2 C2 07 76 F7 26 C6 42 12 03 13 23 30 85 A9 5E 07 0A 36 C9

The final sequence of bits to draw in the zigzag scan: 0100000100010100100001100101011011000110110001101111001011000010000001110111011011110111001001101100011001000010000100100000001100010011001000110011000010000101101010010101111000000111000010100011011011001001

5. Draw fixed patterns

Draw the horizontal and vertical timing patterns (on both row 6 and column 6, counting from 0 starting at the top left corner):

Draw finder patterns on the three corners, each of which is 8×8 including the separator, overwriting some timing modules:

Draw temporary dummy format bits (adjacent to the finders):

6. Draw codewords and remainder

Compute the zigzag scan (which starts from the bottom right corner) to visit all unfilled modules (i.e. skipping function modules):

Draw data/ECC modules according to the zigzag scan order and bit values from the final sequence of codewords:

(For example, the codeword byte C5 (hex) is 11000101 in binary, and produces the sequence of modules [dark, dark, light, light, light, dark, light, dark].)

7. Try applying each mask

Show:

The mask pattern (only affects non-function modules):

XOR the mask to the modules of data, ECC, and remainder:

Draw the actual format bits (adjacent to the finders):

8. Find penalty patterns

Horizontal runs of same color modules (each at least 5 long):

Vertical runs of same color modules (each at least 5 long):

2×2 boxes of same color modules:

Horizontal finder-like patterns:

Vertical finder-like patterns:

Balance of dark/light modules:

Side length: 21
Total modules: 441
Light modules: 221
Dark modules: 220
Proportion dark: 49.887%
Deviation from half:−0.113%

9. Calculate penalty points, select best mask

Mask RunP BoxP FindP BalP TotalP
020515984001204
118714780001134
217311180001084
316711480001081
419512680001121
518115976001100
618312688001189
718311484001137

Lowest total penalty points: Mask pattern 3

How penalties are calculated:

  • RunP: 3 points for each 5-module linear run of the same color, 4 points for each 6-module run, 5 points for each 7-module run, 6 points for each 8-module run, etc. Runs cannot overlap.

  • BoxP: 3 points for each 2×2 box of the same color. Boxes can overlap.

  • FindP: 40 points for each finder-like pattern. Finder patterns can overlap.

  • BalP: 0 points if the proportion of dark modules is in the range [45%, 55%]; 10 points if within [40%, 60%]; 20 points if within [35%, 65%]; 30 points if within [30%, 70%]; etc.


This web application’s source TypeScript code (file 0, file 1) and compiled JavaScript code are available for viewing.

More info